HYBRID EVENT: You can participate in person at Valencia, Spain or Virtually from your home or work.
HYBRID EVENT
September 08-10, 2025 | Valencia, Spain
GPMB 2025

A highly efficient genetic transformation system for broccoli breeding and improvement

Zhansheng Li, Speaker at Plant Science Conferences
Chinese Academy of Agricultural Sciences, China
Title : A highly efficient genetic transformation system for broccoli breeding and improvement

Abstract:

Agrobacterium-mediated genetic transformation has been widely used for the identification of functional genes and regulatory and developmental mechanisms in plants. However, there are still some problems of low genetic transformation efficiency and high genotype dependence in cruciferous crops. In this study, broccoli, a worldwide Brassica crop, was used to investigate the effects of genotype, explant type, concentration of hygromycin B used during seedling selection, overexpression vector type, RNAi and CRISPR- cas9 on the genetic transformation efficiency. At the same time, two vectors, PHG-031350 and PHG-CRa, were used for subcellular localization of the glucoraphanin synthesis-related gene FMOGS-OX5 and clubroot resistance gene by a PEG-Ca2+-mediated transient transformation system for broccoli protoplasts. Finally, the Agrobacterium-mediated genetic transformation system of broccoli was optimized and improved. This study showed that hypocotyl explants are more suitable for Agrobacterium-mediated transgene and CRISPR-Cas9 gene editing of broccoli. In contrast to previous studies, we found that 5 mg/L hygromycin B was more advantageous for the selection of resistant broccoli sprouts, and genotype 19B42 reached the highest transformation rate of 26.96%, which is higher than that in Brassica oleracea crops. In addition, the inbred line 19B42 successfully achieved high genetic transformation of overexpression, RNAi and CRISPR/Cas9 vectors; thus, it is powerful recipient material for the genetic transformation of broccoli. Subcellular localization proved that the glucoraphanin metabolism-related gene Bol031350 and clubroot resistance gene CRa were both expressed in the cytoplasm and nucleus, which provided a scientific basis for studying the regulation of glucosinolate metabolism and clubroot resistance in cruciferous crops. Therefore, these findings will provide new insight into the improvement of the genetic transformation and molecular breeding of Brassica oleracea crops.

Biography:

Dr. Zhansheng Li studied vegetable sciences at the Graduate School of Chinese Academy of Agricultural Sciences (GSCAAS), Zhansheng Li graduated and received his doctor degree in 2012. He then worked as a researcher in broccoli breeding and biotechnology at the Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences (IVF-CAAS). He obtained the position of Professor at the IVF-CAAS since 2023. He has published more than 60 research articles in SCI (E) journals.

Watsapp